一种特殊的循环神经网络:长短期记忆网络
- GeekerNews.Com
- 2023-03-17 13:31
长短期记忆网络(Long Short-Term Memory, LSTM)是一种特殊的循环神经网络,由Hochreiter和Schmidhuber于1997年提出,用于解决传统循环神经网络(RNN)在长时间序列训练中出现的梯度消失或梯度爆炸问题。LSTM可以通过门控机制来决定是否记住或遗忘过去的信息,从而使其可以更好地处理长时间序列数据。
LSTM中的关键部分是记忆单元(Memory cell),该单元可以存储和读取信息,并通过门控机制控制信息的流动。LSTM中的门控单元包括遗忘门、输入门和输出门,它们分别决定从记忆单元中遗忘多少信息、读取多少新信息和输出多少信息。这些门控单元的作用使得LSTM可以更好地控制信息的流动,从而提高了长时间序列训练的准确性和效率。
LSTM(Long Short-Term Memory)模型是一种特殊的循环神经网络(RNN),用于处理序列数据。下面是 LSTM 模型中的公式:
\(i_t = \sigma\ (W_{ii} x_t + b_{ii} + W_{hi} h_{t-1} + b_{hi})\)
\(f_t = \sigma\ (W_{if} x_t + b_{if} + W_{hf} h_{t-1} + b_{hf})\)
\(o_t = \sigma\ (W_{io} x_t + b_{io} + W_{ho} h_{t-1} + b_{ho})\)
\(g_t = \tanh\ (W_{ig} x_t + b_{ig} + W_{hg} h_{t-1} + b_{hg})\)
\(c_t = f_t \odot c_{t-1} + i_t \odot g_t\)
\(h_t = o_t \odot \tanh(c_t)\)
其中,\(x_t\) 表示时间步 \(t\) 的输入,\(h_t\) 表示时间步 \(t\) 的输出,\(C_t\) 表示时间步 \(t\) 的记忆状态,\(f_t\)、\(i_t\)、\(o_t\) 是遗忘门、输入门和输出门的值,\(\tilde{C}_t\) 是候选记忆状态。\(W_f\)、\(W_i\)、\(W_C\)、\(W_o\) 分别是权重参数,\(b_f\)、\(b_i\)、\(b_C\)、\(b_o\) 是偏置参数,\(\sigma\) 和 \(\tanh\) 分别是 sigmoid 函数和双曲正切函数。\(\odot\) 表示逐元素相乘。
LSTM的训练方式和其他神经网络相似,通常使用反向传播算法和梯度下降优化算法进行训练。在训练过程中,LSTM需要优化的参数包括权重矩阵\(W_f\)、\(W_i\)、\(W_C\)、\(W_o\)和偏置向量\(b_f\)、\(b_i\)、\(b_C\)、\(b_o\)等。
时空复杂度
LSTM 的时间复杂度取决于序列长度和 LSTM 层的大小,通常可以表示为 \(O(TN^2)\),其中 \(T\) 是序列长度,\(N\) 是 LSTM 层的大小。这是因为每个 LSTM 层中的计算都涉及到一个矩阵乘法操作和若干个逐元素乘法操作,因此时间复杂度随着序列长度和 LSTM 层的大小增加而增加。
LSTM 的空间复杂度主要取决于 LSTM 层的大小,通常可以表示为 \(O(N^2)\) 或 \(O(N)\)。在 LSTM 层中,需要存储许多权重和偏置,以及输入、输出和内部状态。因此,LSTM 层的大小对存储需求具有很大的影响。此外,还需要存储输入和输出的中间结果,因此在序列长度较大时,空间复杂度也会随之增加。
长短期记忆网络(LSTM)的优缺点如下:
优点:
- LSTM 能够有效地解决传统循环神经网络(RNN)的梯度消失问题,可以处理更长的时间序列数据。
- LSTM 通过门控机制(包括输入门、遗忘门和输出门)控制信息的流动,可以很好地捕捉序列中的长程依赖关系。
- LSTM 可以通过堆叠多个 LSTM 层来增强模型的表达能力。
缺点:
- LSTM 计算量较大,包括矩阵乘法和非线性函数计算等操作,因此训练和推理的速度较慢。
- LSTM 中的门控机制需要额外的参数和计算,增加了模型的复杂度和存储需求。
综上所述,LSTM 具有很强的表达能力和长程依赖建模能力,但计算量较大,需要更多的存储和计算资源。
- 神经网络
相关文章
资讯
- 4天前
Moka AI 探索实践:七年技术深耕,从单点突破到招聘全流程闭环
- 2周前
AI赋能新一代工业软件,第四届工业软件创新应用大赛颁奖典礼圆满举办
- 3周前
探索DeepSeek全场景部署实践,优刻得举办AI专题分享会
- 1个月前
神州鲲泰问学一体机DeepSeek版发布:垂直场景深度赋能,破局企业AI落地难题
- 1个月前
易联众“智鼎云帆大模型平台”全面接入DeepSeek
- 2024-12-21
第五届中国人工智能大赛成果发布会成功举办
- 2024-12-13
北京电信聚焦“上云用数” 推动国产算力应用与智算创新发展
- 2024-12-05
讯飞智作超拟人数字人功能全面开放,开启全民定制新潮流
- 2024-11-25
探索未来之路 激发AI创新 “天翼云·息壤杯”高校AI大赛北京区域赛开赛
- 2024-11-24
亚马逊向Anthropic追加40亿美元投资 加速人工智能创新与应用
- 2024-11-24
科大讯飞:拟推首期员工持股计划
- 2024-11-17
彰显青年风采 传承科学家精神 中国科技青年风采荟在浙江温州举行
- 2024-11-12
2024AI+研发数字(AiDD)峰会深圳站圆满收官!
- 2024-11-09
200余支队伍蓉城“百模论剑”,“人工智能+”全国性赛事报名倒计时3天
- 2024-10-19
三个老发明家献给盛世的礼物---“录味机”
原创
荐读
-
5G+AR加持 晨星机器人掀起“智能化+人机交互”制造新趋势
2021世界制造业大会于11月22日在合肥落下帷幕。为期四天的大会中,作为向世界展示智能制造全面能力的窗口,联想展示了一系列让人惊喜的创新产品。现场展示的ThinkPad X1 Fold整体重量仅有1公斤,折叠起来之后的厚度大约为24毫米。当保持半开状态时,可以像拿本书一样握住,并且能同时运行两个应用程序。使用固定在中间的键盘之后,瞬间变...
-
智能手机竞争中失败,日本在联网汽车领域举步维艰
据外媒报道,在制造带有数字联网服务的汽车的竞争中,丰田汽车和日产汽车面临着被本土市场拖累的风险。与美国和欧洲的汽车消费者不同的是,日本消费者不愿意为这些联网功能和服务买单。结果就是:日本只有10%的汽车...
-
2020年河南省将推广应用3万台工业机器人
到2020年,推广应用3万台工业机器人,建设1000条智能生产线、300个智能车间、150个智能工厂……4月16日,在2018两岸智能装备制造郑州论坛上,河南省工信委发布了《2017年河南省智能制造白皮书》,河南智能制造的2020...